
Graph Partitioning and Parallel Solvers:Has the Emperor No Clothes??(Extended Abstract)Bruce HendricksonSandia National Labs, Albuquerque, NM 87185{1110Abstract. Sparse matrix-vector multiplication is the kernel for manyscienti�c computations. Parallelizing this operation requires the matrixto be divided among processors. This division is commonly phrased interms of graph partitioning. Although this abstraction has proved tobe very useful, it has signi�cant
aws and limitations. The cost modelimplicit in this abstraction is only a weak approximation to the truecost of the parallel matrix-vector multiplication. And the graph model isunnecessarily restrictive. This paper will detail the shortcomings of thecurrent paradigm and suggest directions for improvement and furtherresearch.1 IntroductionOver the past several years, a comfortable consensus has settled upon the com-munity concerning the applicability of graph partitioning to the parallelizationof explicit methods and iterative solvers. This consensus is largely the resultof two happy occurrences. First is the availability of good algorithms and soft-ware for partitioning graphs, motivated by parallel computing applications (eg.Chaco [2], METIS [5], JOSTLE [11], PARTY [10] and SCOTCH [9]). Second isthe excellent parallel e�ciencies which can be obtained when solving di�erentialequations. Clearly, the latter is a consequence of the former, right?Yes, and no. Although the Emperor may not be completely naked, he iswearing little more than his underwear. The graph partitioning abstraction isseriously
awed, and its uncritical adoption by the community has limited in-vestigation of alternatives. The standard partitioning approach su�ers from twokinds of shortcomings. First, it optimizes the wrong metric. And second, it isunnecessarily limiting. These shortcomings will be discussed in detail below. Thepurpose of this paper is to elucidate these failings, and to suggest some improve-ments and directions for further research. More generally, I hope to stimulaterenewed interest in a set of problems that has been erroneously considered to besolved.? In Proc. Irregular '98, c
Springer-Verlag.This work was funded by the Applied Math-ematical Sciences program, U.S. Department of Energy, O�ce of Energy Researchand performed at Sandia National Laboratories, operated for the U.S. DOE undercontract number DE-AC04-76DP00789.

2 Matrices, Graphs and GridsBefore discussing the problems with graph partitioning in detail, it will be helpfulto review the relationship between grids, matrices and graphs. A grid or mesh isthe sca�olding upon which a function is decomposed into simple pieces. Standardtechniques for solving di�erential equations represent their solutions as a unionof simple functions on the pieces the grid. The grid determines the nonzerostructure of the corresponding sparse matrix, but the relationship between thegrid and the matrix can be complex. The solution values can be associated withgrid points, or with grid regions. Multiple unknowns per grid point lead to blockstructure in the matrix. A nonzero value in the matrix might occur for eachpair of grid points which are connected by an edge. Alternatively, a nonzeromight occur if two grid points share a region. More complicated relationshipsare also possible. But an important point is that the matrices associated withcomputational grids are usually structurally symmetric. That is, if element [i; j]is nonzero, then so is element [j; i].The standard graph of a symmetric n�n matrix has n vertices, and an edgeconnects vertices i and j if matrix element [i; j] is nonzero. Note that this graphis generally not identical to the grid, although the two are related. Also notethat every symmetric matrix has a graph, whether or not it has a correspondinggrid.For parallelizing iterative solvers, three graphs are commonly used.1. The standard graph of the (symmetric) matrix.2. The grid.3. The dual of the grid. That is, each region becomes a vertex and two verticesare connected if their corresponding regions are adjacent to each otherEach of these graphs has its advantages and disadvantages. The graph of thematrix is unambiguous and always available for symmetric matrices. But if thematrix is never explicitly formed, the graph may be di�cult to construct. Andif there are multiple unknowns per grid point, then the graph of the matrix maybe unnecessarily large.The grid does not su�er from the problem of multiple unknowns, and so canbe a smaller representation of the basic structure of the matrix. However, asdiscussed above, it only approximates the structure of the matrix. Also, if thematrix doesn't come from a grid-based di�erential equation, then there may beno grid to use.The dual of the grid has the same advantages and disadvantages as the grid,and its construction requires some nontrivial e�ort on the part of the user. How-ever, as will be discussed in x4, when the standard graph partitioning approachis used, the dual is often a better model of communication requirements thanthe grid itself.

3 Parallel Matrix-Vector MultiplicationFor sparse matrices, the standard approach to parallelizing matrix-vector mul-tiplication involves dividing the rows of the matrix among the processors. Eachprocessor is responsible for computing the contributions from the matrix valuesit owns. Consider forming the product y = Ax on p processors. The rows andcolumns of A are divided into p sets, and the elements of x and y are dividedin the same way. As we will discuss below, graph partitioning is only applicableto structurally symmetric matrices, so for the remainder of this section we willassume that A is structurally symmetric. Conceptually, the partitioning can bethought of as a symmetric reordering of the rows and columns of A, and alsoof x and y, followed by an organization of A into block structure as illustratedbelow. A = 26664A11 A12 � � � A1pA21 A22 � � � A2p...Ap1 Ap2 � � � App37775 ; (1)Processor i begins with segment i of x and computes segment i of y. It hasall the necessary elements of x to compute the contribution from its diagonalblock Aii. To compute the contribution of o�-diagonal blocks, processor i needssome x values from other processors. Speci�cally, if A(k; l) 2 Aij is nonzero,then processor i needs x(l) from processor j. This exchange of elements of x isall the communication required to form the matrix-vector product.Several important observations are in order. First, the block structure of Acan be interpreted in terms of the standard graph of the matrix of A. Since eachrow of A is a vertex in the graph, the block structure induces a partitioning ofthe vertices into p sets. Second, the total number of nonzero values in Aij isequal to the number of edges in the graph which connect vertices in partitioni to those in partition j. Third, the number of x values that processor j mustsend to processor i is equal to the number of vertices in partition j which haveneighbors in partition i. We will call vertices which have neighbors on otherprocessors boundary vertices.Explicit solvers have exactly the same communication pattern as matrix-vector multiplication. Consequently, all the issues discussed here are relevant tothem as well.It is worth noting that the same row-wise partitioning of the matrix can alsobe used to e�ciently compute z = ATw. This is useful for nonsymmetric matricessince many iterative methods for such matrices require both matrix-vector andmatrix-transpose-vector products. Details can be found in [3].4 Problems with Graph PartitioningThe standard graph partitioning problem addressed by codes like Chaco [2] andMETIS [5] is the following. Divide the vertices of the graph into equally sized

sets in such a way that the number of edges crossing between sets is minimized.(This formulation can be generalized to consider weights on the vertices andedges, but details are beyond the scope of this paper.) The construction of anappropriate graph is the responsibility of the user, and typically one of the threegraphs described in x2 is used. By limiting the number of edges crossing betweensets, the o�-diagonal blocks of the matrix have few nonzeros. Thus, in matrixterms, graph partitioning methods try to put most of the nonzero values in thediagonal block. This is clearly advantageous for limiting the communication,but unfortunately, the number of cut edges is not the most important thing tominimize. The inappropriateness of this metric are discussed in x4.1, while moregeneral limitations of the graph partitioning model are described in x4.2.4.1 Problems With Edge CutsMinimizing edge cuts has three major
aws.A. Although widely assumed to be the case, edge cuts are not proportionalto the total communication volume. Obviously, this depends on the graphpresented to the partitioner. If the graph is the standard graph of the matrixthen, as discussed in 3, the communication volume is instead proportionalto the number of boundary vertices. It is for this reason that the dual ofthe grid is often used as the graph to partition. Edges in the dual roughlycorrespond to pairs of boundary vertices in the grid. But the dual may bedi�cult to construct, and is not de�ned for general matrices. It would bebetter to have a partitioner that works directly with the structure of thematrix and tries to minimize an accurate model of the communication cost.B. Sending a message on a parallel computer requires some startup time (orlatency) and some time proportional to the length of the message. Graphpartitioning approaches try to (approximately) minimize the total volume,but not the total number of messages. Unfortunately, in all but the largestproblems, latencies can be more important than volume.C. The performance of a parallel application is limited by the slowest proces-sor. Even if all the computational work is well balanced, the communicatione�ort might not be. Graph partitioning algorithms try to minimize the to-tal communication cost. However, optimal performance will be obtained byinstead minimizing the maximum communication cost among all processors.In some applications it is best to minimize the sum of the computation andcommunication time, so imbalance in one can be o�set in the other. Thestandard graph partitioning approaches don't address these issues.With these problems, why has the standard graph partitioning approachproved so successful for the parallel solution of di�erential equations? There aretwo reasons. First, grid points generally have only a small number of neighbors.So cutting a minimal number of edges ensures that the number of boundaryvertices is within a small multiple of the optimal. This isn't true of more gen-eral matrices. Also, well structured grids have good partitions. If the number of

processors is kept �xed while the problem size increases, latencies become unim-portant and the computational work for a matrix-vector multiplication shouldgrow linearly with n, while the communication volume should only grow as n2=3in 3D and n1=2 in 2D. Thus, very large problems should exhibit excellent scalabil-ity, even if the partition is nonoptimal. For more general matrices, this inherentscalability doesn't hold true, and the quality of the partition matters much more.4.2 Limitations of Graph partitioningBesides minimizing the wrong objective function, the standard graph partition-ing approach su�ers from several limitations, all re
ective of a lack of express-ibility of the model.A. Only square, symmetric matrices. In the standard graph model, a singlevertex represents both a row and a column of a matrix. If the matrix is notsquare, then the model doesn't apply. Also, in the standard model the singleedge between i and j can't distinguish a nonzero in location (i:j) from onein location (j; i). So even square matrices aren't handled well if they are notsymmetric.B. Only symmetric partitions. Since a single vertex represents both a rowand a column, the partition of the rows is forced to be identical to thepartition of the columns. This is equivalent to forcing the partition of y tobe identical to the partition of x in y = Ax. If the matrix is symmetric, thenthis restriction simpli�es the operation of an iterative solver. However, fornonsymmetric solvers, this restriction is unnecessary.C. Ignores the application of the preconditioner. Preconditioning candramatically improve the performance and robustness of iterative solvers.In a preconditioned iterative method, the matrix-vector product is only onepart of a larger operation. For some preconditioners (eg. Jacobi) optimalperformance of y = Ax will lead to good overall performance. But for morecomplex preconditioners it is better to consider the full calculation insteadof just the matrix-vector product. Unfortunately, the standard graph modelhas no capacity to consider the larger problem.5 A Better Combinatorial ModelSome of the limitations discussed in x4.2 can be addressed by a more expressivemodel proposed by Kolda and Hendrickson [3, 4, 8]. The model uses a bipartitegraph to represent the matrix. In this graph, there is a vertex for each row andanother vertex for each column. An edge connects row vertex i to column vertexj if there is a nonzero in matrix location [i; j]. The structure of nonsymmetric andnonsquare matrices can be unambiguously described in this way, which addresseslimitation (A).The row vertices and column vertices can now each be partitioned into psets, which corresponds to �nding a p�p block structure of the matrix. An edge

between a row vertex in partition i and a column vertex in partition j correspondsto a nonzero value in o�-diagonal block Aij . By minimizing such edges, mostof the nonzero values will be in the diagonal blocks. The same matrix-vectormultiplication algorithm sketched above can now be applied. The partition of xwill correspond to the column partition of A, while the partition of y re
ects A'srow partition. The freedom to have di�erent row and column partitions removeslimitation (B).The freedom to decouple row and column partitions has an additional ad-vantage. Consider the case where two matrices are involved, so y = BAx. In [3],Hendrickson and Kolda show that the row partition can be used to get goodperformance in the application of A, while the column partition can optimizethe application of B. So if a preconditioner is explicitly formed as a matrix (eg.approximate inverse preconditioners), then the bipartite partitioning problemcan model the full iteration. This is a partial resolution of limitation (C).Although the bipartite model is more expressive than the standard model,the algorithms in [3] still optimize the
awed metric of edge cuts.6 Conclusions and Directions for Further ResearchDespite the success of the standard graph partitioning approach to many paral-lel computing applications, the methodology is
awed. Graph partitioning min-imizes the wrong metric, and the graph model of matrices is unnecessarily lim-iting. A bipartite graph representation resolves some of the limitations, but anumber of important open questions remain.1. More accurate metric. The principle shortcoming of standard graph par-titioning is that the quantity being minimized does not directly re
ect thecommunication cost in the application. Unfortunately, minimizing a moreappropriate metric is challenging. Boundary vertices, the correct measure ofcommunication volume, are harder to optimize than edge cuts. A good re�ne-ment algorithm which works on this quantity would be a signi�cant advance.More generally, the true communication cost in a parallel matrix-vector mul-tiplication operation is more complex than just total volume. The numberof messages can be at least as important as the volume, but graph partition-ing algorithms seem ill suited to addressing this quantity directly. Similarly,since the processors tend to stay synchronized in an iterative solver, themaximum communication load over processors is more important than thetotal. These issues have received insu�cient attention.2. Matrix and preconditioner. As discussed in x4.2, the matrix-vector mul-tiplication is generally only a piece of a larger operation. Methodologies thatoptimize a full step of the iterative solver would be better. The bipartitemodel described in x5 is an improvement, but much work remains to bedone.3. Multicriteria partitioning. In many parallel applications there are severalcomputational kernels with di�erent load balancing needs. In many of these

situations, the individual kernels are synchronized so for peak performanceeach kernel must be load balanced. A simple example is the application ofboundary conditions which only occurs on the surface of a mesh. A goodpartition for such a problem will divide the problem in such a way that eachkernel is balanced. In the boundary condition example, each processor shouldown a portion of the surface of the mesh, and also of the full volumetric mesh.This important problem has not yet received su�cient attention, but someresearchers are beginning to address it [7].4. Partitioning for domain decomposition. Domain decomposition is anumerical technique in which a large grid is broken into smaller pieces. Thesolver works on individual subdomains �rst, and then couples them together.The properties of a good decomposition are not entirely clear, and they de-pend upon the details of the solution technique. But they are almost certainlynot identical to the criteria for matrix-vector multiplication. For instance,Farhat, et al. [1] argue that the domains must have good aspect ratios (eg.not be long and skinny). It can also be important that subdomains areconnected, even though the best partitions for matrix-vector multiplicationneedn't be. For the most part, practitioners of domain decomposition havemade due with partitioning algorithms developed for other purposes, withperhaps some minor perturbations at the end. But a concerted e�ort to de-vise schemes which meet the need of this community could lead to signi�cantadvances.5. Parallel partitioning. Most of the work on parallel partitioning has beendone in the context of dynamic load balancing. But several trends are in-creasing the need for this capability. First is the interest in very large meshes,which won't easily �t on a sequential machine and so must be partitionedin parallel. Second, for a more subtle reason, is the growing interest in het-erogeneous parallel architectures. Generally, partitioning is performed as apreprocessing step in which the user speci�es the number of processors theproblem will run on. With heterogeneous parallel machines, the number ofprocessors is insu�cient { the partitioner should also know their relativespeeds and memory sizes. A user will want to run on whatever processorshappen to be idle when the job is ready, so it is impossible to provide thisinformation to a partitioner in advance. A better solution is to partition onthe parallel machine when the job is initiated. A number of parallel parti-tioners have been implemented including Jostle [11] and ParMETIS [6]. Thisis an active area of researchDespite the general feeling that partitioning is a mature area, there are anumber of open problems and many opportunities for signi�cant advances inthe state of the art.AcknowledgementsThe ideas in this paper have been in
uenced by many discussions with RobLeland and Tammy Kolda. I have also bene�ted from conversations with Ray

Tuminaro, David Day, Alex Pothen and Michele Benzi.References1. C. Farhat, N. Maman and G. Brown,Mesh partitioning for implicit computationvia domain decomposition: impact and optimization of the subdomain aspect ratio,Int. J. Num. Meth. Engrg. 38 (1995), pp. 989{1000.2. B. Hendrickson and R. Leland, The Chaco user's guide, version 2.0, Tech. Rep.SAND95-2344, Sandia Natl. Lab., Albuquerque, NM, 87185, 1995.3. B. Hendrickson and T. G. Kolda, Parallel algorithms for nonsymmetric itera-tive solvers. In preparation.4. , Partitioning Sparse Rectangular Matrices for Parallel Computation of Ax andAT v. In Lecture Notes in Computer Science, Springer-Verlag, 1998. Proc. PARA'98.To appear.5. G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partition-ing irregular graphs, Tech. Rep. 95-035, Dept. Computer Science, Univ. Minnesota,Minneapolis, MN 55455, 1995.6. , Parallel multilevel graph partitioning, Tech. Rep. 95-036, Dept. ComputerScience, Univ. Minnesota, Minneapolis, MN 55455, 1995.7. , Multilevel algorithms for multi-constraint graph partitioning, Tech. Rep. 98-019, Dept. Computer Science, Univ. Minnesota, Minneapolis, MN 55455, 1998.8. T. G. Kolda, Partitioning sparse rectangular matrices for parallel processing. InProc. Irregular'98, 1998.9. F. Pellegrini, SCOTCH 3.1 user's guide, Tech. Rep. 1137-96, Laboratoire Borde-lais de Recherche en Informatique, Universite Bordeaux, France, 1996.10. R. Preis, R. Diekmann, The PARTY Partitioning-Library, User Guide - Version1.1, Tech. Rep. tr-rsfb-96-024, University of Paderborn, Paderborn, Germany, 1996.11. C. Walshaw, M. Cross, and M. Everett,Mesh partitioning and load-balancingfor distributed memory parallel systems, in Proc. Parallel & Distributed Computingfor Computational Mechanics, Lochinver, Scotland, 1997, B. Topping, ed., 1998.

This article was processed using the LATEX macro package with LLNCS style

